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ABSTRACT 

 

This thesis presented the research, design and fabrication associated with a unique 

application of rectenna technology combined with lock-in amplification. An extremely 

low-power harmonic transponder is conjoined with an interrogator base-station, and 

utilizing coherent demodulation the Remote Lock-In Amplifier (RLIA) concept is 

realized. Utilizing harmonic re-radiation with very low-power input, the 1
st
 generation 

transponder detects a transmitted interrogation signal and responds by retransmitting the 

second harmonic of the signal. The 1
st
 generation transponder performs this task while 

using no additional power besides that which accompanies the wireless signal. 

Demonstration of the first complete configuration provided proof of concept for the 

RLIA and feasibility of processing relevant information under ―zero‖ power operating 

conditions with a remote transponder.  

Design and fabrication of a new transponder where the existing zero-bias 

transponder was modified to include a DC bias to the diode-based frequency doubler is 

presented. Applied bias voltage directly changed the impedance match between the 

receiving 1.3 GHz antenna and the diode causing a change in conversion loss. Testing 

demonstrated that a change in conversion loss induces an amplitude modulation on the 

retransmission of the signal from the transponder. A test of bias sweep at the optimal 

operating frequency was performed on the 2
nd

 generation transponder and it was seen that 
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a change of ~ 0.1 V in either a positive or negative bias configuration induced an 

approximate 15 dB change in transponder output power.  

A diode-integrated radar detector is designed to sense microwaves occurring at a 

certain frequency within its local environment and transform the microwave energy to a 

DC voltage proportional the strength of the signal impinging on its receiving antenna. 

The output of the radar detector could then be redirected to the bias input of the 2
nd

 

generation transponder, where this DC voltage input would cause a change in conversion 

loss and modulate the retransmitted interrogation signal from the transponder to the base 

station. When the base station receives the modulated interrogation signal the information 

sensed by the radar detector is extracted. Simulations and testing results of the fabricated 

radar detector demonstrate capability of sensing a signal of approximately -53.3 dBm, 

and accordingly producing a rectified DC voltage output of 0.05 mV. A comparison is 

made between these findings and the transponder measurements to demonstrate 

feasibility of pairing the radar detector and the 2
nd

 generation transponder together at the 

remote sensor node to perform modulation of interrogation signals. 
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CHAPTER 1 

INTRODUCTION 

 

There is no argument that radio has made a profound impact on humanity over the 

past hundred years. Some of the primary applications of this technology have been within 

the realm of mobile and telecommunications, navigation, and links for computer-

controlled systems. Advances continue to be made, particularly within microwave 

technology, involving new applications. Microwave power transmission was the desired 

application behind the conception of the ―rectenna‖ in the mid 1960‘s [1], and since that 

time rectenna technology has continued to develop. New arenas have been discovered for 

this technology and methods of use have expanded, including remote sensing [2], 

monitoring of infrastructure [3], and energy harvesting and recycling [4, 5].  

The research described in this thesis focuses on a unique application of sensing 

involving rectenna technology combined with phase sensitive detection implemented by a 

lock-in amplifier within an interrogating transceiver. A harmonic re-radiator is employed 

within the system as a remote sensor and signal interrogation is performed to 

communicate relevant information from its location. The goal of this research is to 

implement phase sensitive detection to enhance the ability of the interrogating transceiver 

to detect a very low power return signal from the remote sensor. 
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1.1 Lock-In Amplifiers and Phase Sensitive Detection  

Lock-in amplifiers are devices used to detect extremely small AC signals reaching 

as low as -100 dBm or more. It is not uncommon for lock-in amplifiers to operate with 

sensitivities in the nano-volt range, allowing for monitoring and extracting of information 

below the system noise floor. Lock-in amplifiers have long been used in laboratories for 

accurate small signal detection and complex impedance measurement [6-8]. 

The technique employed by lock-in amplifiers to perform such tasks is referred to 

as ―phase-sensitive detection‖ and entails singling out a signal component at a specific 

reference frequency. Noise signals at all other frequencies are rejected by the lock-in 

amplifier and thus do not contribute to the measurement. Phase sensitive detection is 

performed by the lock-in amplifier by utilizing a phased locked-loop that synchronizes to 

the external reference channel input (Figure 1.1) creating an internal reference signal. 

This internal reference signal is then multiplied by the signal channel input. The product 

of the two signals is amplified and passed through a low-pass filter, removing the AC 

components. The resulting signal will be zero unless the signal frequency is identical to 

the reference frequency, in which case a DC voltage proportional to the signal channel 

input will be seen at the lock-in amplifier‘s output (DC Out in Figure 1.1)  [9]. 
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Figure 1.1: Block diagram of Lock-In Amplifier 

 

With the goal of implementing phase sensitive detection with a lock-in amplifier 

in a remote fashion, the proposed scheme in Figure 1.2 was created. The scheme utilizes 

a lock-in amplifier within an interrogating base station (interrogator node) and a low- to 

zero-power transponder as part of the remote sensor node. The configuration is named a 

Remote Lock-In Amplifier (RLIA) and it is unique in that the high power consuming 

electronics within the RLIA system are separated from the low-power remote 

components, while the system as a whole performs phase sensitive detection to sense and 

gather remote intelligence.  
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Figure 1.2: Block diagram of RLIA concept. 
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1.2 Harmonic Re-Radiator: 1
st
 and 2

nd
 Generation 

Employed within the RLIA system is a harmonic re-radiator, referred to as a 

Frequency Doubling Rectenna (FDR). The FDR was developed for low-power sensing 

applications [2]. An illustration of the FDR concept is depicted in Figure 1.3. Using the 

principles of frequency multiplication, this device receives an interrogation signal at 1.3 

GHz and retransmits the 2
nd

 harmonic at 2.6 GHz. The FDR is initially used in the first 

stage of demonstrating the RLIA concept by assuming the role of the transponder or 

remote sensor node. The printed circuit board design consists of two quarter-wavelength 

patch antennas (1.3 GHz and 2.6 GHz) and a diode-based doubler. The FDR was 

designed for minimum conversion loss for a low-power input application, yet possesses 

sufficient sensitivity for efficient data collection within a remote interrogation scheme.  

 

 

Figure 1.3: Concept of Frequency Doubling Rectenna [2]. (1
st
 generation transponder) 
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The goal in the first phase of this research involved verifying the capability to 

effectively communicate with the 1
st
 generation low-power remote transponder within the 

RLIA system. The Interrogator (RLIA) from Figure 1.2 was constructed using standard 

testing equipment and testing was performed at a distance between the interrogating node 

and remote sensor node that would provide an input power giving the best possible 

conversion efficiency from the transponder (Chapter Three, Figure 3.7, Appendix A). 

Sweeps of transmitted power and frequency were performed to characterize the 1
st
 

generation transponder and determine the minimum detectable signal level arriving to the 

interrogator node from the remote sensor node. The entire RLIA system was 

characterized through measured link budgets, which were then verified with the 

calculated link budgets. 

The second phase of implementing the RLIA system involved a redesign of the 1
st
 

generation transponder to include a DC bias connection to the diode doubler, as seen in 

Figure 1.4 (2
nd

 generation transponder). An applied bias voltage to the diode directly 

changes the impedance match between the receiving 1.3 GHz antenna and the doubler 

causing a change in conversion loss. This change in conversion loss will induce an 

amplitude modulating effect on the retransmission of the signal from the transponder by 

reducing the output power of the processed signal. Ideally, a small change in bias voltage 

will cause a decrease or increase in the output power of the transponder to essentially turn 

―off‖ or ―on‖ the retransmitted signal. Testing was performed according to the diagram 

seen in Figure 3.10 of Chapter Three (Appendix A), and it was verified that the new 

design in fact could process relevant information back to the interrogator node through 

this modulation process. Such tests provided the initial proof of concept for utilizing the 
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RLIA system with a frequency discrimination scheme where a remote network of several 

devices could be interrogated simultaneously and each individual device communicates 

detected information back to a base station relevant to its environment. 

 

 

Figure 1.4: Concept of biased transponder (2
nd

 generation transponder). 

 

1.3     Diode-Integrated Radar Detector 

In the final stage of this research a diode-integrated radar detector is designed, 

fabricated and tested. Providing the functionality of the sensor element and reactance 

modulator as seen in Figure 1.2, the radar detector verifies feasibility of using a separate 

device concurrently with the 2
nd

 generation transponder to realize the full RLIA system. 

As seen in Figure 1.5, the radar detector is designed by modifying the 1
st
 generation 

transponder and replacing the transmitting 2.6 GHz patch antenna with a pad for a DC 

voltage connection. Additionally, a shunt capacitor is introduced to short the RF 

components of the signal, and a shunt resistor is included to maximize voltage sensitivity. 
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Being essentially a rectenna, the radar detector senses microwaves occurring at a certain 

frequency within its local environment and transforms the microwave energy to a DC 

voltage proportional the strength of the signal impinging on the receiving antenna. The 

output of the radar detector could then be redirected to the bias input of the 2
nd

 generation 

transponder, where this DC voltage input would cause a change in conversion loss and 

modulate the retransmitted interrogation signal to the base station. When the base station 

receives the modulated interrogation signal—using the lock-in amplifier—the 

information sensed by the radar detector will be extracted. However, when the radar 

detector is not sensing the presence of microwave energy at the frequency of interest it 

will simply have a zero DC voltage output, which will not affect the conversion 

efficiency of the transponder.  

 

 

Figure 1.5: Concept of diode-integrated radar detector 
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1.4   Overview and Contributions of the Research 

The primary goals of this research were: 

 Develop using standard testing equipment and the 1
st
 generation 

transponder the RLIA system, and demonstrate the capability to 

effectively communicate with the low-power sensor. 

 Design, fabricate and test the 2
nd

 generation transponder and verify 

modulation capabilities using the same RLIA system. 

 Design, fabricate and test a diode-integrated radar detector to determine 

feasibility of employing such a device with the 2
nd

 generation transponder 

to effectively communicate information sensed within the environment of 

the remote sensor node (Figure 1.2). 

Chapter Two presents background research related to rectennas and various 

applications and well as an introduction to the 1
st
 generation transponder (harmonic re-

radiator) used within the RLIA system. Chapter Three focuses on characterization of the 

various components of the RLIA system and integration of the transponder within the 

system. The second part of Chapter Three presents the design and fabrication of the 2
nd

 

generation transponder. Test results are presented to verify the feasibility of using the 

transponder in the RLIA system to implement a frequency discrimination communication 

scheme. Chapter Four presents the design and fabrication of a diode-integrated radar 

detector to investigate feasibility of introducing a separate sensing element and utilizing it 

concurrently with the 2
nd

 generation transponder. The ultimate goal in this research is to 

have the two devices comprise a remote sensor node and provide the initial proof of 
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concept where information occurring at a specific frequency is detected and this is 

communicated back to the interrogator node in the form of a modulated interrogation 

signal. 
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CHAPTER 2 

BACKGROUND OF RECTENNAS, SIGNIFICANCE IN CURRENT WORK AND 

RELATED RESEARCH 

 

2.1 Introduction 

Rectennas have assumed a pivotal role in the growing field of low-power sensing 

and monitoring, where small passive devices are needed that fulfill cost, size, weight and 

power issues. Additionally, rectenna arrays show significant promise for the continued 

development of wireless power transfer, and the exploration of this concept within new 

arenas has demonstrated a potentially bold impact on future technologies. 

Within this chapter, a discussion of rectenna technologies is presented and some 

of the many applications are explored. Beginning with a brief look at the history of 

wireless microwave power transfer, this chapter investigates related applications to Solar 

Power Satellites (SPS), aircraft powering, and wireless power distribution systems in 

buildings. Rectenna array technologies for various applications are also discussed, 

including the different antenna polarizations employed, choices of diodes, and 

operational parameters.  

Applications within wireless sensor networks are then presented, focusing on 

retrodirective array systems and their use within sensor networks, monitoring and sensing 

of infrastructure, and energy harvesting and recycling. Lastly, a Frequency Doubling 

Rectenna (FDR) used as a harmonic re-radiator is described as another application of 

rectenna technology for sensing purposes. It is the subject of further discussion 
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throughout this thesis and is redesigned and employed within a transponder-based 

interrogation network scheme. 

  

2.2 Diode Applications and Schottky Diodes 

Because a diode is a non-linear circuit element, it will generate harmonics of a 

given sinusoidal input signal. According to Balanis, this non-linearity may be exercised 

to provide useful applications of signal detection, demodulation, switching, frequency 

multiplication, and oscillation [10]. Frequency conversion is a common application of the 

Schottky barrier diode, and as noted in [11] encompasses signal detection (demodulation 

of an amplitude modulated signal), mixing (frequency shifting), and rectification 

(conversion of an AC to DC signal). As most wireless sensor devices perform at least one 

of the aforementioned tasks, a Schottky diode is a commonly used element in the design 

of such devices. For high frequency applications, a Schottky diode is preferable to the 

classic pn junction diode. As opposed to the pn junction diode, the Schottky diode 

consists of a semiconductor-metal junction that maintains a much lower junction 

capacitance and forward voltage drop, providing better conversion efficiency.  
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2.3 Schottky Diode Characteristics and Application Specific Parameters 

As a common application of diodes, rectification is used for signal strength 

indication. As previously discussed, and also cited in [4], within low RF frequencies (kHz 

to lower MHz), both pn diodes and transistors are used as rectifiers. However, at 

microwave frequencies (1 GHz and higher), either GaAs or Si Schottky diodes are 

necessary, due to the required transit times. 

Within a rectifier application such devices convert a fraction of a RF signal to DC 

power. The result of this conversion is seen as an output of the diode in the form of a DC 

voltage proportional to the input signal. Let the diode voltage be equal to V=V0+v, where 

the DC bias voltage is V0 and the small AC signal voltage is v. The diode current can be 

expressed in expanded Taylor series form as the sum of the DC bias current, I0, and the 

AC current, i, as: 

 

                   
  

 
      (2.1) 

 

where the bias current is I0=I(V0), and Gd is the dynamic conductance of the diode, where 

 and Rj is the junction resistance. In practice, the AC characteristics of a diode 

involve reactive effects due to the structure and packaging of the diode. Figure 2.1 shows 

an equivalent AC circuit model for a Schottky diode. 

 



Gd 
1

R j
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Figure 2.1: Equivalent AC circuit model for a Schottky diode. 

 

If the diode voltage is comprised of a sinusoidal small-signal RF voltage and a 

DC bias voltage, it will be equal to: 

 

  (2.2) 

 

Therefore, equation (2.1) can be rewritten as: 

 

               
  

 
      

      (2.3) 

     
  

 
              

  

 
           (2.4) 

 

where I0 is the bias current and  is the DC rectified current. Additionally, and due 

to inherent non-linearity of the diode element, the output of the diode will produce 



V V0  v0 cos0t



v0
2
G'd

4
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harmonics of ω0, 2ω0, and higher order. Often times, for the purposes of signal detection, 

harmonics produced by circuit elements will be removed by a simple low-pass filter. 

However, in some applications of remote sensing, the production of these signal 

harmonics are put to use, as seen in [2]. Two important parameters in the application of 

signal detection for a diode are current sensitivity,   , and voltage sensitivity,  . Current 

sensitivity for a diode is defined as the change in DC output current due to a given RF 

power input from the received signal. Following from (2.1), using the first term in the 

sum, the RF power input to the diode is . Additionally, (2.4) shows that the change 

in DC current will be . Therefore, the current sensitivity can be defined as: 

 

  (2.5) 

 

Voltage sensitivity, , can be defined in terms of the voltage drop across the 

junction resistance when the diode is open-circuited as: 

 

    (2.6) 

Voltage sensitivity is quantified in units of  
  

  
, and a typical diode detector will range 

from 400 to 1500 
  

  
 , as seen in [11].  
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 An area of concern associated with the Schottky diode—especially within the 

applications of detection and wireless power transfer—is the loss occurring inside the 

element itself, which inevitably contributes to circuit loss and overall device efficiency. 

Such losses are associated with the voltage drop of the Schottky barrier and the series 

resistance of the diode. As noted in [12], a significant reduction in diode series resistance 

can be achieved during the design process of the substrate, active epitaxial region, and 

diode contacts.  

For some detecting applications, a diode is employed to demodulate an amplitude 

modulated RF signal. In this case, the diode voltage can be expressed as: 

 

                         (2.7) 

 

where  is the RF carrier frequency and  is the modulated frequency. The output 

spectrum of the detected amplitude modulated signal can be seen in Figure 2.2, where the 

linear output terms of the diode voltage have frequencies of  and .  
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Figure 2.2: Spectral output of detected modulated signal 

 

Table 2.1 shows the frequencies and relative amplitudes of the terms of the diode 

output that are proportional to the square of the diode voltage. Square-law behavior from 

the output of a diode detector is limited and can only be obtained within a certain region 

of input powers. 
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Table 2.1: Frequencies and relative amplitudes of a diode detector within the square-law 

region of output. 

 

 

 

 

 

Outside of this region—where input signal power levels are either too large or too 

small—the square-law region is not applicable. If the input signal power level is too 

large, the diode output will become saturated, approaching a linear and then constant i 

versus P characteristic. In the opposite regard, if the input signal power level is too small 

it will be lost within the noise floor, becoming undetectable. Figure 2.3 shows a typical 

voltage sensitivity curve for a diode. Within the square-law region,        
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applications where power levels are interpreted by the output voltage provided by the 

diode, the square-law region of operation is essential [11]. Some examples of diode 

applications of this type can be seen in [13], [14], and [4]. 

For the purposes of optimized diode sensitivity or to generate modulation 

characteristics, a bias voltage may be applied to the diode. At a certain operating voltage, 

a diode may either produce its maximum output or it may reduce its output by a sufficient 

amount that it may serve as a ―digital off‖ state for modulation purposes.  

 

 

Figure 2.3: Square-law region of a diode detector 

 

As seen in [15], wherein a diode is utilized to generate the second harmonic of a 

received interrogation signal, maximum radiation is achieved in the on-state when a 

varactor diode is operating under reverse-bias. Signal transmission is then reduced by 

approximately 10 dB when the applied bias changes to 0 V. 
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2.4 Wireless Power Transfer as an Application of Diode Rectification 

 At the end of the nineteenth century Nicola Tesla conceived the idea of 

transmitting electrical power without wires [16].  He worked for years on a concept that 

would employ the Earth and Ionsphere as a giant capacitor, storing energy that would be 

distributed by means of wireless power transmission. Unfortunately, due to a fateful 

decision by Tesla‘s investor, J. P. Morgan—after learning the project was designed for 

wireless power transmission and not for the purpose of telegraphy—the work was 

abandoned. It is unknown if the project could have achieved the potential success Tesla 

believed it would. Interestingly, for the majority of the twentieth-century, radio had been 

used primarily as a means of transmitting information and intelligence, seemingly being 

disregarded for the purposes of power transmission—perhaps due to the lack of necessary 

microwave technology [17]. After the invention and initial development of microwave 

technologies, usage was predominantly limited to communications and radar. 

In the most elementary fashion, wireless power transmission can be defined as a 

three-stage process. The first step involves conversion of DC electrical power to RF 

power. Secondly, the RF power is transmitted through space to specific location. The 

third step then involves capturing the RF power through a reception device and 

converting it back to DC power through a receiver system [1]. Wireless power 

transmission has been employed in a vast array of applications including helicopter and 

airplane powering [17][18], solar powered satellite-to-Earth transmission of microwave 

energy [19], nonlinear plasma-wave excitation in the ionosphere by high-power 

microwave beams [17], and microwave power transmission for wireless power 

distribution systems in buildings [20]. 
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2.4.1 Development of Microwave Power Transmission (MPT) and Conception of 

the “Rectenna” 

By the early 1960s, work done by R. H. George at Purdue showed that dense 

arrays of closely spaced diodes within an expanded waveguide could achieve as much as 

40 W of DC power output from microwaves in the range 2-3 GHz [21]. Prior to this 

point, the semiconductor diode had been ignored as a microwave power rectifier due to 

its individual inherently low-power handling capability. Consequently, this work 

demonstrated how power-handling capability could be combined to produce reasonable 

amounts of DC power. However, one issue still to be resolved at that time was the 

problem relating to low RF power collection efficiency. As a solution to the limiting 

potential of the first diode array power rectifiers, the concept of the ―rectenna‖ was born 

[1]. The proposed solution to the low efficiency of the prior work was to remove the 

individual full-wave rectifiers from the waveguide, incorporate them with half-wave 

dipoles, and introduce a reflecting plane behind them [22]. In an effort to drive a 

proposed microwave-powered helicopter experiment—that later developed into a contract 

between Raytheon and the Air Force—the development of the rectenna continued [1]. 

The outcome was the first rectenna array, conceived at Raytheon in 1963 and built and 

tested at Purdue. It was composed of 28 half-wave dipoles, and each was terminated in a 

bridge rectifier comprised of four IN82G point-contact, semiconductor diodes [23].  

The development of a microwave beam powered helicopter at Raytheon 

accelerated the evolution of rectenna technology and was a pivotal experiment in the 

further study of free-space microwave power transfer. The microwave-powered 

helicopter was essentially a hovering platform with an electric motor, a propeller, and a 4 
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ft
2 

rectenna array. The rectenna array was assembled from 4480 semiconductor IN82G 

diodes and had a maximum power output of 270 Watts. The microwave power source 

employed was a 5 kW magnetron that operated at 2450 MHz. Combined capture and 

rectification efficiency of the rectenna array was significant, reaching levels of 55 

percent, with rectification efficiencies of the diodes themselves being measured at 80 

percent. Additionally, the helicopter flew continuously for an impressive 10 hours at an 

altitude of 50 feet. The helicopter device demonstrated an unmanned propulsion 

technology that could be sustained by a continuous supply of ―weightless fuel,‖ and could 

serve as a useful tool in the area of communication and surveillance [18].  

 Following the success of the helicopter project, Brown (et al) published findings 

from continued research in power reception efficiency in free-space with rectifier devices 

as seen in [12]. Rectennas were designed using GaAs Schottky-barrier diodes combined 

with rectifier circuit technology and input and output filtering, reaching 82-86 percent 

RF-to-DC efficiency—the highest recorded RF-to-DC conversion efficiency according to 

Matsumoto [17]. A single-diode half-wave rectifier configuration was the focus of the 

continued work, as it was believed to embody an agreeable compromise between 

efficiency, power handling capability, cost, and printed circuit adaptation. Additionally, 

GaAs diodes were specifically used because of their ability to individually supply 5-10 W 

of DC power output when used in a rectenna element. 

Further development of the rectenna was conducted with a focus on the design of 

low-power density operation. As seen in [24], a 2.45 GHz rectenna was designed to 

absorb small amounts (as low as 50 mW) of microwave power. This rectenna had the 

capacity to absorb incident power density levels that were 10,000 times lower than 
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contemporary rectennas and convert the power into DC at levels that were still useful. To 

achieve this, the standard rectenna design—in which there was an individual rectifier in 

each microwave collecting element—was abandoned. A broadside array was adopted as 

the collecting aperture and several advantages were realized, a few of which were: (1) the 

ability to filter out harmonics by introducing a filter element, (2) a reduction in the 

number of required diodes, (3) maximum efficiency realized from the diodes, and (4) the 

ability to employ the array as either a transmitter or receiver [24].  

Continuing forward with Brown‘s findings from the original helicopter 

experiment, Matsumoto published [17], where a project named MILAX is described—a 

fuel-free microwave driven airplane equipped with lightweight microstrip rectennas. In 

order to control a target moving both vertically and horizontally with a microwave power 

beam, a phased-array transmitting antenna was designed. 

 

2.4.2 MPT in Solar Power Satellites (SPS) and Related Experiments 

Over the years, since the beginning of rectenna technology, research and advances 

have been made within the subject of rectennas used in free-space microwave power 

transfer. One area of particular interest is solar power satellites (SPS). Solar power 

satellites, which are geostationary orbital stations, are characterized by having immense 

power capacity (5-GW). Such satellites generate electrical power through solar cells and 

transmit microwaves from the station to a site on Earth composed of rectenna arrays. 

SPS, a concept introduced by Dr. Peter Glaser of the Arthur D. Little Company in 1968 

[25], was a development that was predicted by Brown to have a profound effect on the 

future direction of wireless power transfer technology. Many key issues stemming from 
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the technology of SPS became apparent to Glaser, and in [26] he addresses the economic 

and environmental considerations directly related to the microwave beaming utilized in 

MPT for SPS. 

In collaboration, Brown and Glaser organized the first technical session on SPS at 

the International Symposium of the International Microwave Power Institute at the Hague 

in 1970. In a joint effort between NASA, JPL and Raytheon in 1973 at Raytheon‘s 

Goldstone facility, the first long distance wireless power transfer experiment using SPS 

technology was demonstrated. Power was transferred by a microwave beam over a 

distance of 1 mile, with a DC output of 30 kW, utilizing a 288 ft
2
 rectenna array [1]. It 

was a significant milestone in the progress of SPS technology, as the distance and amount 

of power transfer documented were almost two orders of magnitude greater than had 

been accomplished in prior experiments. In 1976-77 important electrical and mechanical 

improvements were made to rectenna technology through work supported by LeRC. One 

of the most significant changes was the move from a three-plane system to a two-plane 

system; this new format would eventually lead to thin-film etched circuit format used in 

aerospace applications [1], [27]. Brown further focused his research and work of high- 

powered rectennas toward SPS applications, later publishing [28]. 

Through the years, since the conception of SPS, research has continued in this 

technology. In 1995, Shinohara and Matsumoto developed a new rectenna array using 

circular polarization. The rectenna utilized circular microstrip antennas (CMAs) and a 

bridge rectifier configuration. As Brown‘s prior experiments, this was another example of 

a high receiving power application; rectenna input powers from 100 to 10,000 mW were 

utilized. Within a sub-array configuration, the total number of rectenna elements on the 
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array was 2,304; this gave a peak RF-to-DC efficiency of 64 percent with an input RF 

power of 2-4 W [19]. McSpadden, Little, et al proposed in 1996 ―In-Space Wireless 

Energy Transmission‖ [29] where a target for MPT is acquired and maintained. The 

experiment involved a planar phased array antenna housed on the space shuttle bay that 

beams to the target rectenna on the free-flying Wake Shield Facility (WSF) with a pilot 

guide signal beam. The WSF follows behind the shuttle, taking advantage of the vacuum 

―wake‖ generated by shuttle movement (which has been shown to be 1,000 times better 

than the most advanced laboratory vacuum chambers on Earth). This naturally occurring 

vacuum environment was shown to be useful for epitaxial thin-film materials processing 

in space [30]. The linearly polarized phased array antenna would transmit 1 kW of power 

a distance of 100 meters, allowing the rectenna on the WSF to produce a DC output 

power of 65W [29]. 

 As part of ongoing research related to SPS and MPT, Matsumoto investigated 

possible nonlinear plasma-wave excitation in the ionosphere caused by high-power 

microwave beams through two rocket experiments: the Microwave Ionosphere Nonlinear 

Interaction Experiment (MINIX) and the International Space Year-Microwave Energy 

Transmission in Space (ISY-METS) [17]. These two experiments provided significant 

results on non-linear wave interaction in ionospheric plasma caused by microwave power 

beams, as well as proving that MPT in space is possible. Losses through plasma-wave 

excitation were shown to be less than 1 percent of total transmitted power [31].  

As of 2010, developments in microwave power transmission related to SPS have 

continued to evolve, particularly in Japan at the Research Institute for Sustainable 

Humanosphere, Kyoto. Current research for MPT is focused on developing a phased 



www.manaraa.com

26 
 

array power transmitter to control beam direction that is highly efficient and low-cost. 

Cost and efficiency are paramount for the sake of establishing MPT commercial 

applications, and according to [32], are the reasons more commercial applications of 

MPT do not currently exist. A transmitting phased array for SPS and MPT is currently 

being developed at Kyoto University as a part of a government program. The phased 

array is composed of 256 elements, operating at 5.8 GHz, having an output power of 1.5 

kW and a total DC-to-RF conversion efficiency of greater than 40 percent. Additionally, 

a receiver phased array is being developed with an efficiency of greater than 50 percent 

and an output power of 0.1 mW for each individual rectenna element. The purposes of 

advancement are not limited to SPS, they are in part due to the anticipation of future 

commercial MPT applications, such as ubiquitous power sources for wireless cell phone 

charging, MPT for wireless power distribution systems in buildings [20], and wireless 

charging of electric vehicles [32]. However, there are still obstacles to overcome before 

MPT can be considered for commercial applications. One important issue is frequency 

regulation in an already crowded spectrum, especially within the ISM band. Another 

concern, according to [20] is the shortage of effective and economical MPT applications. 

Most research in the realm of MPT has been single point-to-single point transmission; 

however there are few recognized advantages to MPT over wired power transmission in 

this regard.  
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2.4.3 MPT for Wireless Power Distribution Systems in Buildings 

With respect to a single point-to-multiple point configuration, especially with 

low-power devices, there is much promise for MPT. Devices such as ICs, sensors and 

RF-IDs that operate within the microwatt range are reasonably applicable in MPT, where 

a single point source could power many devices at one time. Buildings, being closed area 

environments, where high power MPT systems can operate within current frequency 

regulations, provide many opportunities for wireless power transfer. Shinohara, et al, 

have proposed an indoor wireless power distribution system (WPDS), whereby power is 

distributed wirelessly using existing building components—for example, deck plates. 

Within this system, such components are utilized as microwave transmission waveguides; 

the microwaves propagate within the medium and there is no radiation [20]. The use of 

existing building components reduces the initial cost of construction for automated 

buildings. Additionally, rectennas are placed as DC outlets on the floor and can be moved 

practically anywhere since microwaves exist everywhere within the floor. The proposed 

system could be useful in an office environment where DC driven ―OA‖ instruments are 

frequently used, such as computers, fax and copy machines, refrigerators, etc. It has been 

estimated with WPDS that one DC outlet needs < 50W and within this proposed work a 

single room has been provided with microwave power >3kW, at an operating frequency 

of 2.45 GHz. For the purposes of this project, a highly efficient rectenna is designed 

using Schottky barrier diodes. To achieve a rectification of 100W, a 64-way power 

divider configuration is used with 256 total diodes. The rectenna has provided 55 percent 

RF-to-DC conversion efficiency with an input of 100W, at a physical size of 125 mm x 

110 mm, x 95mm [20]. Several companies within the United States have recognized the 
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potential of MPT and have taken an active approach to development in this area [33], 

[34], [35].  MPT applications of this kind display a very promising future in many areas 

of automation, and could evolve to become a source of immense energy conservation 

through increased usage efficiency. 

 Many applications of wireless power transfer with rectennas have utilized a 

variety of antenna polarization techniques and power density operations. Linear 

polarization was used for low-power density rectennas in [24], which proved to be useful 

for transponders in a sensor or communications system in which the interrogation signal 

also supplies power to the transponder. Additionally, linear polarization was seen in [12] 

for the purpose of in-space wireless energy transmission. Dual polarized antennas were 

seen in [25] and [26], useful for low-power signal detection and operation of mechanical 

actuators. Circularly polarized receiving antennas were employed for the purposes of 

[19], [36], and [37]. These polarization techniques were shown to be effective for 

microwave power transmission within SPS and distributed monitoring sensor systems 

within infrastructure, with efficiencies as high as 78 percent. Low-power density 

operation was the focus of [13], [14], and [4], and it was proven to be successful within 

the realm of wireless powering of low-power indoor sensor networks and remote sensors, 

as well as recycling of ambient microwave energy.  
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2.5 Rectennas and Remote Wireless Sensing Networks  

As previously investigated, diode integrated rectennas have been shown to be 

useful within many applications of wireless power. However, these devices are 

instrumental within yet a broader scope of applications—one important application being 

sensing, monitoring, and communication within remote wireless networks. The spectrum 

of monitoring and sensing is extensive, including: temperature and humidity sensing, 

light and laser detection, chemical and biological sensing, sound and vibration detection, 

and radio/IED/radar detection. Rectennas play a key role within remote sensor networks 

not only by providing power to the system; they are an essential element to 

communicating collected information within a sensor network back to a data collection 

device. 

 

2.5.1 Rectennas and Retrodirective Array Systems  

Research on rectenna arrays has continued within this important field, and 

numerous approaches have been taken to find fitting solutions to current obstacles and to 

streamlining existing systems. In [38], an adaptive power controllable 5.8 GHz 

Retrodirective Array System is proposed, which is useful for wireless sensor servers that 

behave as access points between wireless sensors and remote data collectors. A 

Retrodirective Array System is described as being able to respond to an incoming signal 

with a return signal not having prior knowledge of the originating source‘s location. This 

―self-beam-steering‖ capability is effective in numerous remote network applications 

such as monitoring, data collection, in-space applications, etc. Within the array system is 

an integrated rectenna and analog switch that controls a battery source. It is able to 
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conserve battery power in idle mode and wake when operation is necessary, thus 

prolonging its lifetime. An incoming RF signal wakes the system by accumulating power 

at the input that is converted to DC voltage, thereafter activating a switch and battery. 

The arriving signal is split between the rectenna and receiver, where the majority of the 

power is directed to the rectenna. In the absence of an interrogation signal, the switch 

remains open and the system is off. In [39] a 60 GHz Retrodirective Array System is 

developed for multimedia sensor server applications. This system streamlines battery 

efficiency of remote sensors through an incorporated interrogation scheme that uses 

―wake‖ and ―sleep‖ commands to turn on/off the system at different times, according to 

required usage times. When the received power is above 0.013 mW/cm
2
, the system 

powers on and operates as a Retrodirective Array. In addition to streamlining power 

efficiency, the proposed system uses a microwave frequency of 60 GHz to be compatible 

with higher data rate requirements, which are often needed in certain remote monitoring 

applications.  

 

2.5.2 Rectennas for Monitoring and Sensing of Infrastructure  

The life span and current conditions of the reinforcement of infrastructures such 

as buildings, roads, and bridges and is of major concern for public safety in modern 

times. Developing sensor network technologies can be significantly beneficial in helping 

assess the continuously changing conditions of infrastructure. For example, miniaturized 

embedded sensors can monitor steel reinforcement tendons inside the concrete covering 

of a bridge, and can be deployed during the construction process, as discussed in [37]. It 

has been shown that detecting cracks or deformations in infrastructures can be achieved 
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through the use of embedded active acoustic wave transducers operating within the ISM 

frequency band [3]. However, there is a need for an intermediate technology to process 

and transmit the collected information from these sensors to an appropriate destination, as 

well as power the embedded devices. A mobile test unit—using an on-board rectenna—

has been proposed in [37] as a means to do so. There is also anticipation of future ―in-

situ‖ surface-installed supervisory control sensors that will be in the vicinity of such 

embedded sensors, and these control sensors will perform the function of data 

transmission and powering. Circularly polarized antennas within the rectenna devices are 

again recommended as a means of obtaining constant DC voltage regardless of rectenna 

rotation. In [37], a rectenna featuring a circularly polarized microstrip patch antenna is 

proposed, which can provide wireless battery powering at 5.5 GHz and data delivery 

within the 5.15-5.35 GHz WLAN band.  

 

2.5.3 Energy Harvesting and Recycling for Use in Sensor Networks 

 It is very probable that the future will see a ubiquitous presence of remote sensors, 

beyond the aforementioned infrastructure applications. Areas such as intelligent office 

spaces, medical monitoring, surveillance systems, military, construction and 

manufacturing, and even agriculture will very likely become enveloped with the 

technology in the coming decades. Along with this expected presence comes the need to 

efficiently harness and deliver the energy required by low-powered sensor networks. 

There is much research in the field of energy harvesting and energy recycling utilizing 

rectenna technology for these purposes.  
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 RFID is a popular technology for sensor networks and should continue to be in 

the future. For the purposes of powering batteryless RFID sensors, a low-profile planar 

rectenna has been proposed which scavenges ambient RF power from the surroundings 

and delivers to sensors within a wireless network [40]. The described rectenna 

technology is integrated with the RFID sensors themselves and operates at 2.4 GHz. A 

two-stage Dickson zero-bias Schottky rectifier circuit with a miniaturized antenna 

provides a RF-to-DC conversion efficiency of approximately 54 percent at an input 

power of 10 dBm. Recycling of ambient microwave energy with broadband rectenna 

arrays has been described in [4], utilizing low-power density microwave radiation. The 

purposes of this work are also focused on the wireless powering of industrial sensors 

within a network structure. A 64-element dual-circularly polarized spiral rectenna array 

was designed and characterized over a frequency range of 2-18 GHz. Measurement of the 

rectenna was made with broadside linear polarized radiation at 3 GHz with an incident 

power density ranging from tens of nW/cm
2
 to 0.1 mW/cm

2
. Rectification efficiency was 

seen to reach the 20 percent range for an incident power density of 0.1 mW/cm
2
 with 

arbitrary polarization [4].   

 

2.6 Wireless Passive Surface Acoustic Wave Sensors 

Another form of passive technology shown to be useful in the realm of sensing is 

surface acoustic wave (SAW) technology. By exploiting the piezoelectric effect of the 

material on which they are fabricated on (quartz, lithium niobate, lanthanum gallium 

silicate, etc), SAW sensors convert acoustic waves to electronic signals. The conversion 

is typically achieved through an inter-digital transducer within the device. Much research 
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within the subject of SAWs has been conducted within the past twenty years [41]. 

Sensing applications related to many areas such as optical, thermal, biological, chemical, 

and pressure have seen developments. 

In particular, passive wireless SAW sensors have shown to be very useful for in-

space applications involving structural health monitoring (SHM) of space-vehicles as 

seen in [42].  In an area where constant close range monitoring of the physical structure 

of space-vehicles is crucial, passive SAW sensors offer many advantages. Wireless 

passive SAW sensors offer a solution to many cost, mass, volume, and power constraints 

within SHM instrumentation on a space-vehicle, and often eliminate the need for heavy 

wiring and battery requirements associated with wired SHM systems. SAW sensors also 

operate more robustly within a wider range of extreme temperatures often experienced in 

an in-space environment.  

In addition to in-space vehicular applications, [43] explores the use of SAW 

sensors in rough environments related to motor vehicles. In such environments, SAW 

sensors have proven to be useful in providing remote readouts to computers located 

within the vehicle in severe environments that other types of sensors cannot withstand, 

for example, within heat, dirt, mechanical vibration, or electromagnetic interference. 

Interrogable SAW sensors used within a network have also been explored. As seen in 

[44], a technique to allow multiple sensors to operate simultaneously was developed and 

demonstrated using a network analyzer and sine pulse interrogation. NASA is continuing  

to sponsor the research and development of wireless passive SAW sensors due to their 

inherent environmental robustness and ability to operate well in multi-sensor networks. 
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2.7 Rectennas Using Harmonic Re-Radiation for Sensing Applications 

 Within many remote wireless network applications, monitoring and sensing is 

made possible by integrating diodes into low-power wireless devices that operate by 

modifying and re-radiating a received interrogation signal. In [1] a high efficiency diode 

doubler—also named a frequency doubling reflectenna (FDR)—is implemented and is 

shown to be an efficient model for a remote sensor. Within this described work, a 

modulated form of the second harmonic of a received interrogation signal serves as a 

return communication signal from the remote sensor within a network. In field 

application, the return communication signal from a remote sensor may contain 

quantified information with respect to the device‘s local environment. The device 

described in [2] is intended for sensing applications and utilizes frequency discrimination 

to enhance the ability of an interrogating transceiver—base station—to detect a signal of 

very low amplitude. Through the employment of a diode, harmonic forms of the 

incoming interrogation signal at 1.3 GHz are produced and a single harmonic at 2.6 GHz 

is retransmitted. The topology of the FDR is presented in Figure 2.4.  
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Figure 2.4: Layout of Frequency Doubling Reflectenna transponder [2] 

 

A GaAs Schottky diode is chosen for the doubling element, as this type of diode 

has proven to perform with high conversion efficiencies at microwave frequencies. The 

transponder also consists of two quarter-wavelength, shorted microstrip patch antennas, 

and matching stubs to provide a conjugate match to the diode. The matching elements 

associated with the antennas provide a source impedance that is very close to the complex 

conjugate of the input impedance to the diode, thus minimizing conversion loss and 

maximizing device efficiency. It is reported in [2] that doubler conversion efficiency 

 of 1% was achieved at -30 dBm input power level. As previously discussed, a 

bias can improve conversion efficiency and provide modulation characteristics, however 

for the described work, in the interest of maintaining a simple design, the bias has been 

neglected. Figure 2.5 shows relative measured power output levels from the tag according 

the respective frequencies of operation. This will be further discussed and comparisons 

will be made in Chapter 3, with a description of how the FDR was incorporated into the 

work of this thesis. Figure 2.5 shows the varying output power (at 2f0) versus input power 
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(at f0) three different fabricated FDRs. The FDR labeled ‗FDR1‘ was the device utilized 

in this work, which is closest to 1.291 GHz operating frequency. Figure 2.6 shows 

changing conversion gain and DC current over a varied input power to the FDR of 0 to -

50 dBm. The proposed harmonic re-radiating rectenna device could be useful for quasi-

optical applications, energy scavenging, and monitoring and sensing [2].  

 

 

Figure 2.5: Received power vs. frequency for 3 FDR devices 
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Figure 2.6: Conversion gain vs. frequency for 3 FDR devices 

 

2.8 Conclusions 

 In summary, a rectenna was described as a diode and antenna integrated device, 

useful in a broad spectrum of low- and high-power applications. A background of diode 

theory was presented, as the Schottky diode is a key component to a rectenna device. 

Rectenna and rectenna array application technologies have been explored, from wireless 

microwave power transfer to remote wireless sensor networks. Much of the ongoing 

research within rectenna technologies exhibits promise for continued improvements in 

communications, safety, and energy conservation. 
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CHAPTER 3 

REMOTE INTERROGATION SYSTEMS WITH HARMONIC RE-RADIATION 

 

3.1 Introduction 

Although the concept of microwave detection has existed since WWII, when 

radar was the first major application of microwave technology, significant advances still 

continue to be made within the field [11]. Such advances are especially noticeable within 

the realm of integrated devices for sensor communication networks. The issues of cost, 

size, and efficiency continue to be addressed through the developments of higher-

efficiency miniaturized devices, such as [45]. For particular sensing networks involving 

remote communication devices, enhancements in size and efficiency of devices at times 

is not sufficient for detectability of low-strength signals. To assist with the task of 

measuring low-strength signals, lock-in amplifiers have been employed. The goal of the 

work described within this chapter was to incorporate the harmonic re-radiator from 

[2]—which possessed significant size and operating efficiencies—into a unique 

configuration termed the ―Remote Lock-In Amplifier‖ (RLIA). The RLIA approach 

utilizes lock-in amplification in a remote connection scheme that separates the heavy 

electronics from the sensor. The interrogation equipment that require more power for 

operation are located at a mobile base-station platform, allowing the sensor to operate 

with ―zero‖ power conditions.  
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3.2 Introduction to Lock-In Amplifiers 

One notable contributor to the evolution of signal detection is the lock-in 

amplifier. Lock-in amplifiers are devices used to detect extremely small AC signals 

reaching as low as -100 dBm or more. It is not uncommon for lock-in amplifiers to 

operate with sensitivities well into the nano-volt range, where signals may be detected in 

the presence of an excessive amount of noise, which would otherwise obscure a signal. 

These devices have proven to be useful in many different measurement applications 

including: complex impedance measurement for nano-wire gas sensing [6], accurate 

measurement of modulated-scattered electric fields [7], and measurement of open-path 

scattered light from fine particles such as diesel particulate emissions [8]. 

The technique employed by lock-in amplifiers to perform such tasks is referred to 

as ―phase-sensitive detection‖ and entails singling out a signal component at a specific 

reference frequency. Noise signals at all other frequencies are rejected by the lock-in 

amplifier and thus do not contribute to the measurement. According to Fourier's theorem, 

representation of a signal in the frequency domain is possible as a sum of many sine 

waves occurring at different amplitudes, frequencies and phases [46]. Time domain 

representation of signals, as in the case of normal oscilloscopes, often does not bear 

enough information about the various frequencies that make up a signal unless it is a 

clean sine wave [9]. However, a lock-in amplifier avoids this by way of multiplying each 

component of the input signal with a pure sine wave at the reference frequency 

contemporaneously. In general, unless two frequencies are identical, the average of the 

product of the two sine waves will be zero. The multiplication done by the lock-in 

amplifier produces a DC signal proportional to the component of the received signal that 
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has a frequency exactly locked to the reference frequency. Following the multiplication 

that occurs, a low-pass filter removes the components at all other frequencies other than 

the reference frequency. 

 

3.2.1 Phase-Sensitive Detection  

The process of Phase-Sensitive Detection utilized by lock-in amplifiers essentially 

deciphers an experimental signal from noise. The measurements performed by lock-in 

amplifiers require the input of a reference frequency. The experiment being performed is 

stimulated at this fixed reference frequency via either a function generator or oscillator, 

and the lock-in amplifier detects the output response of the experiment, which will 

contain the desired signal information at the reference frequency [9]. All other 

frequencies are unnoticeable to the lock-in amplifier. As shown in Figure 3.1 the 

reference signal, provided by the function generator, is a square wave. This signal is 

directed into the lock-in amplifier so as to provide the reference according to the 

frequency it should be ―looking at‖ from the incoming experimental signal. 
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Figure 3.1: Phase sensitive detection performed by a lock-in amplifier 

 

Lock-in amplifiers employ a Phase-Locked-Loop (PLL) fixed on the external 

reference, which in turn generates an internal reference signal. Figure 3.1 shows the 

external reference square wave, the experimental signal, and the internal reference signal 

of the lock-in amplifier. According to [9], the internal reference signal is defined as: 

 

                                   (3.1) 

 

The experimental signal is amplified and multiplied by the reference signal 

through a phase-sensitive detector (PSD) or multiplier. The output of the PSD provides a 

signal that is equal to the product of the two sine waves, as shown below [9]: 
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                                                                          (3.2) 

 

thus, 

 

                                                          

                                                                     

 

The output of the PSD consists of two AC signals, one existing at the sum 

frequency of                 , and the other at the difference frequency of       

          . When the output of the PSD is subsequently passed through a low-pass filter, 

AC signals will be removed. If               
the difference frequency will be a DC 

signal proportional to the signal amplitude and will be equal to [9]:  

 

                                            (3.4) 

 

With traditional analog lock-in amplifiers, the reference and experimental signals 

are analog voltage signals. The two are multiplied in an analog multiplier and passed 

through at least one stage of RC filters. The lock-in amplifier could not successfully 

detect an experimental signal at the reference frequency without the use of narrow band 

detection. Since the input to the lock-in amplifier consists of signal plus noise, it is 

important for it to have a low-pass filter with a very narrow bandwidth. The PSD and 
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low-pass filter are limited to detecting signals very close to the reference frequency. This 

causes noise signals that occur at frequencies far from the reference to be attenuated and 

is a key concept in the operation of the lock-in amplifier [9]. If noise signals occurring at 

frequencies very close to the reference frequency exist, the output of the PSD will 

observe very low frequency AC signals. The strength of these leaked noise signals 

depends on the roll-off and bandwidth of the low-pass filter. The bandwidth of the low-

pass filter ultimately determines the bandwidth of detection for the lock-in amplifier; a 

wider bandwidth will allow some of these noise signals to pass and a smaller bandwidth 

will attenuate the noise signals close to the reference. The experimental signal (the only 

signal occurring at the exact reference frequency) will be unaffected by the low-pass 

filter, as it will be a true DC signal, and this is the signal of interest for measuring [9]. 

Another necessary component of the lock-in amplifier is the PLL. For proper 

measurement of the experimental signal, it is required that the reference and the 

experimental frequencies be equal and have equal phases unchanging with time. A 

change in the two phases will cause                   to change, and subsequently 

     will not be a DC signal. Therefore, the lock-in amplifier utilizes a PLL to lock the 

internal reference oscillator to the external reference, providing a consistent reference 

sine wave at      with a fixed phase shift of     . This feature ensures that a change in 

the external reference frequency will not disturb the measurements [9]. 
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3.3 Detector and Lock-In Amplifier Characterization  

In Chapter Two a discussion of the characteristics of the Schottky barrier diode 

was presented. Another important characteristic of a diode detector, particularly when an 

application requires measurement of extremely low-power signals, is Tangential 

Sensitivity (TSS). According to [47], the TSS of a diode detector is the lowest signal 

power level for which the detector will have a specified signal-to-noise ratio at its output. 

Measurements of TSS along with voltage sensitivity are useful in radiometer 

applications. As seen in [48], TSS measurements can be performed to estimate noise 

equivalent power (NEP) of the detector itself. In this TSS measurement procedure, input 

power levels are set such that the value where the noise peaks without an RF signal 

equals the lowest noise with an RF signal. Then using an oscilloscope and video 

amplifier the actual value of TSS can be measured. This type of procedure could enhance 

voltage sensitivity of a measurement system where the absolute highest sensitivity values 

are critical. 

In characterization phase for the coaxial detector and lock-in amplifier, various 

testing equipment was incorporated into a bench-top configuration and measurements 

were performed. This was a necessary step in the progression of the RLIA concept since 

future tests would require a reference for measurement verification purposes. The block 

diagram in Figure 3.2 shows the equipment used in the configuration: Standard Research 

Systems Model SR530 lock-in amplifier, Narda Zero Bias Crystal detector Model 4503-

01, variable attenuator, standard signal generator, and standard function generator. The 

documented measurements constituted the effective sensitivity of the detector and 

verified proper function of the lock-in amplifier. A voltage sensitivity curve was 
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constructed from the results, and the Narda detector data sheet was used as a reference to 

verify the sensitivity measurements (Appendix A).  

 

Figure 3.2: Block diagram of detector characterization Using Lock-In Amplifier 

 

The role of the signal generator in the bench-top configuration is to provide the 

fundamental signal source (1.3 GHz) to the detector through a variable attenuator, which 

is then fed to the lock-in amplifier. The function generator provides the reference signal 

for the lock-in amplifier (1 kHz square wave, 100 mV) as well as the chopping frequency 

(1 kHz sine wave, 100 mV), which is the imparted modulation onto the source signal. 

Without both the reference signal and the modulating chopping frequency, the lock-in 

amplifier is unable to perform its function.  Between the signal generator and the detector 

is the variable attenuator, emulating channel loss. The presence of the variable attenuator 

in the configuration provides a way to consistently reduce the signal power level, 

imitating the effects of free space path loss, while keeping the source at a maximum 

signal output level.  

In order to have a reliable test environment, the performance of the standard 

equipment was verified. Before constructing the detector/lock-in characterization set-up, 
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initial measurements were performed on the signal generator using a power meter to 

verify the output power and obtain calibrated signal values. The signal generator was 

programmed to give a continuous wave output of 1.3 GHz at an amplitude of 0 dBm, then 

the output was measured by the power meter with the variable attenuator attached. 

Calibration measurements were performed in order to establish a 0 dBm reference point 

including losses from cables and the variable attenuator. This reference point was 

achieved with a 2.0 dBm output from the signal generator. The coaxial detector was then 

introduced into the circuit at the output of the variable attenuator, in series with a 

multimeter (which was later replaced by the lock-in amplifier). With this configuration it 

was possible to compare the dc voltage output of the detector to the known calibrated 

power input to the detector. Attenuation was decreased in increments of 1dBm and the 

output voltages (mV) from the detector were recorded as seen in Figure 3.3 (Table I, 

Appendix A).  
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Figure 3.3: Measured voltage sensitivity of Narda detector (Model 4503-01)  

using Lock-In Amplifier 
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The signal source was set to its maximum power output of 14.5 dBm (a calibrated 

power output of 11.58 dBm accounting for losses) and the variable attenuator was 

increased in 1 dB steps. The measured signal voltage at the output of the detector vs. 

input power is shown in Figure 3.3. Stable measurements were acquired from 11.58 dBm 

to ~ -50 dBm, at which point fluctuations in voltage output were seen, indicating the TSS 

threshold for the detector.  

 

3.4  Background Work on Sensor Node Harmonic Repeaters—1
st
 Generation 

Transponder 

As previously introduced in Chapter Two, a high-efficiency frequency doubling 

transponder was developed for low-power sensing applications [2]. Using the principles 

of frequency multiplication, this device receives an interrogation signal at 1.3 GHz and 

retransmits the harmonic at 2.6 GHz. This transponder is used to verify the RLIA concept 

and is considered the 1
st
 generation device. The printed circuit board design consists of 

two quarter-wavelength patch antennas (1.3 GHz and 2.6 GHz) and a diode-based 

doubler. Each antenna is operated near its respective resonant frequency, where the 

impedance changes rapidly as a function of frequency. By this and conjugate-matched 

conditions on both sides of the multiplier (Figure 3.4), a bandwidth of less than 0.5%, is 

achieved. In order to provide an intrinsic match to the diode doubler impedance under 

very small-signal conditions, the transponder antennas are designed such that the 

impedance of the receive patch antenna is ~34 + j305 Ω at 1.3 GHz and the impedance of 

the transmit patch antenna is ~40 – j355 Ω at 2.6 GHz. Expected and measured 

conversion gain vs. input power for the 1
st
 generation transponder at 1.3 GHz is shown in 
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Figure 3.5. When properly functioning, the 1
st
 generation transponder will have a 

conversion gain of approximately -20 dB at an input power level of -30 dBm, and 

approximately -15 dB at an input power level of -20 dBm (Figure 3.6). Peak multiplier 

efficiency of ~2% at -30 dBm input power was seen as in the figure, and this was 

achieved over a frequency sweep of 1.27 GHz to 1.305 GHz.  Efficiency is also seen to 

remain relatively flat over a 30-40 dB input power range [2].  

 

 

 

 

Figure 3.4: 1
st
 generation transponder layout: ZS and ZL are the input and output 

impedances of the diode. ZS* and ZL* are the source antenna input impedance and load 

antenna input impedance, respectively [2]. 

 

 

 

 

 

 

 

Figure 3.5: 1
st
 generation transponder expected and measured  

conversion gain vs. input power at 1.3 GHz. 
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Figure 3.6: 1
st
 generation transponder conversion gain vs. input power 

 

As cited in Chapter Two, other diode-integrated rectenna designs have shown 

greater RF-to-DC conversion efficiencies, however, this is in the case of much higher 

transmit powers (wireless power transfer for example).  

 

3.5 1
st
 Generation Transponder within RLIA System  

 

 The following section presents the configuration of the 1
st
 generation transponder 

within the RLIA system, measurements and analysis. The first major test involving the 

full RLIA system focused on demonstrating the capability to effectively communicate 

with the low-power remote transponder and to verify system link budgets. This name can 

be used due to the fact that the device itself requires no additional power to operate, other 

than that carried within the radio signal itself. This is an important feature for many 

remote-sensing schemes where long life with minimal maintenance is a concern. The 1
st
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generation transponder demonstrated proof of concept by processing relevant information 

under ―zero‖ power operating conditions. The full RLIA test set-up was configured so 

that when an interrogation signal is transmitted at a particular frequency, a return signal is 

received from the transponder at double the frequency with the sensor signal modulated 

onto the carrier. The full test configuration was performed with a distance of 1.5 meters 

and is shown in Figure 3.7. The transmitter block is comprised of a 1.3 GHz signal 

source, a function generator that modulates the 1.3 GHz signal, and a transmit antenna 

with a gain of 5.05 dBi. The function generator provides a chopping frequency (sine 

wave form at a frequency of 1 kHz with amplitude of 100mVpp) that is imparted onto the 

transmitted signal. The signal arriving to the receiver block may be very weak or may be 

accompanied by the presence of an overwhelming amount of noise; therefore the 

chopping frequency will assist the lock-in amplifier in locating the signal components 

which contain the desired information. 

The receiver block consists of the necessary components to properly filter and 

coherently demodulate the retransmitted signal from the transponder. It is comprised of a 

receive antenna with a gain of 7.08 dBi, a variable attenuator (to incrementally reduce 

signal strength at a constant rate), filter and amplification stages, a diode detector and a 

lock-in amplifier (Figure 3.7).  
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Figure 3.7: Block diagram of full Remote Lock-In Amplifier interrogation system 
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As aforementioned, coherent demodulation with a chopping and reference 

frequency is an intrinsic feature that is key to the function of the lock-in amplifier. 

However, when a detector is introduced and used concomitantly with the lock-in, it is 

important that the signal reaching the input of the detector be free of undesired 

interference signals. Since the diode detector outputs a particular DC voltage that is 

directly proportional to its input power, ideally the input signal to the detector should be 

solely comprised of the desired information signal. If interference signals (for example 

ambient signals from WLAN, cellular, microwave ovens, etc.) at significant power levels 

are allowed to pass through the system and impinge on the detector, inaccurate voltage 

readings at the output of the detector will result. In light of this, sufficient filtering is 

crucial—including a possible down-conversion stage—to produce a signal that is free of 

interference.  

The RLIA system is equipped with filters on both transmit and receive blocks and 

a down-conversion stage yielding an intermediate frequency of ~60 MHz. The down-

conversion stage facilitates removal of strong interference signals within the 1.8 to 2.8 

GHz band. End-to-end interrogator receiver gain—excluding the antenna—is 75 dB. Link 

budgets based upon the configuration in Figure 3.7 are listed in Tables 3.1 and 3.2. The 

difference between the two budgets is the interrogator transmitted power, which is 5.00 

dBm and -6.02 dBm respectively. In the budget in Table 3.1(a), the transmitted power at 

1.3 GHz is 3.16 mW, which yields an input power of -29.19 dBm to the transponder. At 

this input power level the harmonic transceiver conversion efficiency is approximately -

20 dB. The budget in Table 3.1(b) consists of a transmit power, input power to the 

transponder, and harmonic conversion efficiency of 0.25 mW, -40.21 dBm, and -30 dB 
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respectively. In the first part of testing the RLIA configuration, a spectrum analyzer was 

employed; therefore a system bandwidth of 10 kHz is reported in both budgets that 

correspond to spectrum analyzer settings.  Measurements were conducted in an open lab 

environment and a comparison between calculated and measured output power is given in 

the bottom two lines of each budget table. As seen in the tables, for transmit powers of 

3.16 mW and 0.25 mW the difference in measured and calculated output powers is 1.12 

dB and 4.27 dB respectively. These differences could be attributed to additional 

multipath occurring during experimentation or small interference signals leaking into the 

system. 

Table 3.1 (a) Link budgets for RLIA system at 3.16 mW and  

(b) 0.25 mW transmit powers respectively 

(a) (b) 

  

Interrogator Transmit Frequency 1.30 GHz

Interrogator Transmitter Power 0.00316 W

(5.00) (dBm)

Loss to Interrogator Transmit Antenna 1.00 dB

Interrogator Transmit Antenna Gain 5.048 dB

Distance to Senor Node 1.50 m

Transmit Spreading Loss -38.24 dB

Power Received by Sensor -29.19 dBm

Sensor Receive Antenna Gain 0 dB

Doubler Conversion Loss -20.00 dB

Sensor Transmit Antenna Gain 0 dB

Re-Transmitted Frequency 2.60 GHz

Distance to Interrogation Node 1.50 m

Re-Transmitted Spreading Loss -44.26 dB

Interrogator Receive Antenna Gain 7.075 dB

Power Received by Interrogator Node 2303 fW

(-86.38) (dBm)

Noise Power Density (kT) -173.83 dBm/Hz

Interrogator System Bandwidth 10.00 kHz

Interrogator Noise Figure 3.00 dB

Interrogator Noise Floor -130.83 dBm

Signal to Noise Ratio (SNR) 44.45 dB

Interrogator Receiver Gain 75.00 dB

Power to Detector -11.38 dBm

Measured Value -12.50 dBm

Interrogator Transmit Frequency 1.30 GHz

Interrogator Transmitter Power 0.00025 W

(-6.02) (dBm)

Loss to Interrogator Transmit Antenna 1.00 dB

Interrogator Transmit Antenna Gain 5.048 dB

Distance to Senor Node 1.50 m

Transmit Spreading Loss -38.24 dB

Power Received by Sensor -40.21 dBm

Sensor Receive Antenna Gain 0 dB

Doubler Conversion Loss -30.00 dB

Sensor Transmit Antenna Gain 0 dB

Re-Transmitted Frequency 2.60 GHz

Distance to Interrogation Node 1.50 m

Re-Transmitted Spreading Loss -44.26 dB

Interrogator Receive Antenna Gain 7.075 dB

Power Received by Interrogator Node 3.573 fW

(-114.47) (dBm)

Noise Power Density (kT) -173.83 dBm/Hz

Interrogator System Bandwidth 10.00 kHz

Interrogator Noise Figure 3.00 dB

Interrogator Noise Floor -130.83 dBm

Signal to Noise Ratio (SNR) 16.36 dB

Interrogator Receiver Gain 75.00 dB

Power to Detector -39.47 dBm

Measured Value -35.20 dBm
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The second test portion of the RLIA system involved using both a spectrum 

analyzer and a lock-in amplifier to detect the received signal measured over a swept 

transmit power range. For these results the distance from the interrogator to the sensor 

node was again 1.5 m. Figure 3.8(a) shows the results using a spectrum analyzer, where a 

minimum detectable power of ~ -55 dBm is demonstrated. To verify the output system 

noise floor, first the interrogator noise floor was calculated according to kTB, where k is 

Boltzmann‘s constant (k = 1.380 x 10
-23

 J/ ºK), T is temperature in degrees kelvin (k = 

0.599), and B is the bandwidth of the system, which is taken to be the bandwidth of the 

spectrum analyzer (B = 10 MHz). It is then  possible to take the interrogator noise floor 

value from Tables 3.1(a) and (b) (-130.83 dBm) and add the receiver block gain of 75 dB, 

arriving at a value of -55.83 dBm. Figure 3.8(b) shows the measured results of testing 

with a lock-in amplifier in place of the coaxial diode detector and signal analyzer 

combination. In this testing configuration, minimum detectable signal levels were seen 

approximately 5 dB below the configuration in Figure 3.8(a). It can be deduced that the 

detectable signal using the lock-in amplifier is at least 5 dB into the system noise floor, 

since conversion efficiency of the harmonic transceiver decreases at least linearly with 

input power, as seen in Figure 3.6. 
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   (a)      (b) 

Figure 3.8: (a) Measured performance of the system at an interrogator-to-sensor 

distance of 1.5 m using a spectrum analyzer; (b) lock-in amplifier 

 

3.6 Design of 2
nd

 Generation Transponder  

As the RLIA scheme is further developed, a new version of the transponder is 

introduced. The existing zero-bias transponder is modified to include a DC bias line with 

a series inductor and shunt capacitor to block any RF leakage. An applied bias voltage to 

the diode will directly change the impedance match between the receiving 1.3 GHz 

antenna and the doubler causing a change in conversion loss. This change in conversion 

loss induces an amplitude modulating effect on the retransmission of the signal from the 

transponder. The 2
nd

 generation transponder as seen in Figure 3.9 was fabricated on 

Taconic, 60 mil (Er=6.15) copper substrate and utilizes the shown Coilcraft inductors 

(0402) and Johanson capacitors (0402).  
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Figure 3.9: Layout of 2
nd

 generation transponder 

 

Referring to Figure 3.6, as input power to the transponder drops below -30 dBm, 

conversion efficiency subsequently drops and the same occurs when input power to the 

transponder reaches above -20 dBm. Simply increasing the power level of the transmit 

signal does not convert to a stronger retransmitted signal from the transponder. 

Conclusively, the maximum power the transponder is able to retransmit back to the 

receiver is approximately -40 dBm (-20 dBm – 20 dB [conversion loss]).  With the best 

possible conversion efficiency in mind, testing of the 2
nd

 generation transponder was 

performed with an incident power to the transponder within the range of -20 dBm to -30 

dBm. In determining the appropriate power level required from the signal generator to 

result in an incident power level to the transponder within this range, the proper distance 

between the 1.3 GHz antenna and the transponder needed to be calculated. To achieve a 

transponder input power within the range of -20 to -30 dBm it was necessary to fix the 

source at its maximum level of 14.5 dBm. A link budget of the testing configuration of 

the 2
nd

 generation transponder can be seen in Figure 3.10 (Table II, Appendix A). The 



www.manaraa.com

58 
 

free space path loss computation method was used to determine that a transmitted signal 

of ~12 dBm at a distance of 4 feet would yield an incident input power to the transponder 

at 1.3 GHz within the optimal range. The receive antenna gain of the transponder itself is 

0 dB, therefore the receive power of the transponder is -24.3 dBm, as seen in Figure 3.10. 

 

 

Figure 3.10: 2
nd

 generation transponder testing configuration 

 

In characterizing the transponder, the first test was to identify the optimal transmit 

frequency, which would translate to the highest output power and conversion efficiency 

from the device. The source amplitude was kept at a constant 12.2 dBm, and frequency 

was swept from 1265 to 1315 MHz. The transponder bias was set to a fixed value of 0 V. 

Measurement results are shown in Figures 3.11 and 3.12, where it can be seen that 

optimal transmit frequencies and conversion efficiencies occur at 1275 MHz and 1300 

MHz. 
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Figure 3.11: Pout of transponder at 0 V bias over frequency sweep  

 

 

 

 

 

 

 

 

Figure 3.12: Conversion loss of transponder at 0 V bias over frequency sweep 
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Referring to Figures 3.6 and 3.12 and comparing the 1
st
 and 2

nd
 generation 

transponders, it can be observed that both devices exhibit similar conversion loss 

behavior at input powers around -24 dBm. The next test in the characterization of the 2
nd

 

generation transponder involved fixing the bias and input power level and sweeping the 

frequency to find the peak retransmitted signal power level, as was done in the previous 

test; however, in this test the bias voltage was fixed at +/- 0.05 V and then at +/- 0.15 V. 

The results of this test determined whether a change in bias voltage would cause a shift in 

frequency. This information is critical in the case of employing a frequency diversity 

scheme for interrogating sensors in the field. It is imperative to know the exact spectral 

spacing required for two consecutive sensors to operate without interfering with each 

other. If a change in bias voltage did in fact cause a shift in frequency, this would cause a 

single transponder to experience a shifting peak; and without knowing the amount of 

frequency shift for a single sensor, proper spectral spacing may not be obtained. The 

consequence of this being that when interrogation is in progress, it would be impossible 

to determine if a retransmitted signal is being produced by one single transponder, or if 

another transponder close in frequency is actually producing the signal. As in the former 

test, the transmit frequency was swept from 1265 to 1315 MHz in steps of 5 MHz. Input 

power was fixed at the maximum 12.2 dBm to achieve a -24.3 dBm input level and, as 

seen in Figures 3.13 and 3.14, Pout of the transponder is provided according to the 

respective frequencies. 

 

 



www.manaraa.com

61 
 

 

 

 

 

 

 

 

 

Figure 3.13: Pout of transponder at +/- 0.05 V bias over frequency sweep  

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Pout of transponder at +/- 0.15 V bias over frequency sweep  
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Figures 3.13 and 3.14 reveal the results of changing the applied bias from +/-0.05 

mV to +/- 150 mV. With a zero and +/- 50 mV bias the peak frequency remains at 1275 

MHz, however when the applied bias is changed to +/-150 mV a shift in the peak 

frequency to 1300 MHz is observed. It can be concluded from the behavior of the 

transponder that if a frequency discrimination scheme were to be implemented using this 

and other like devices, frequencies of operation may be desired (in this case, 1275 MHz) 

where both maximum and minimum output powers can be realized with a changing bias. 

The reason for this is that for modulation to occur for one particular transponder, 

essentially the signal needs to turn ―off‖ and ―on‖ as digital zeros and ones. It was 

observed that a zero bias and  +/- 50 mV biases at 1275 MHz allowed signal transmission 

at a much higher output power and a +/- 150 mV bias at the same frequency caused the 

signal power to decrease by 15 dB. 

A comparison of the performance characteristics of the 2
nd

 generation transponder 

in a frequency sweep from 1265 MHz to 1315 MHz is shown in Figure 3.15 (output 

power) and Figure 3.16 (conversion efficiency); tabulated values are listed in Tables 3.2 

and 3.3. The 0 V and +/- 50 mV bias settings exhibit relatively constant trends in 

conversion efficiency behavior, each providing maximum conversion efficiency at 1275 

MHz. The +/- 150 mV bias settings, however, yield output powers from the transponder 

that are approximately 15 dB below that of the 0 V and +/- 50 mV bias settings. These 

combined results again verify feasibility of using the 2
nd

 generation transponder for 

modulation purposes. A change in power output of 15 dB caused from only a 0.1 V 

difference in bias is sufficient to turn ―on‖ and ―off‖ the retransmitted signal.  
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Figure 3.15: Comparison of Pout of transponder at each tested bias over frequency sweep  

 

 

 

Table 3.2: Comparison of Pout of transponder at each tested bias over frequency sweep  
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Figure 3.16: Comparison of conversion loss for each transponder at each tested bias 

over frequency sweep  

 

 

 

Table 3.3: Comparison of conversion loss for each transponder at each tested bias over 

frequency sweep  
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In the previous tests the transponder bias voltage was held constant while the 

transmitted frequency was swept. Measurements involving a sweep of the bias voltage 

needed to be made to determine the optimal biasing condition for operation of the 

transponder, as well as to verify with previous tests the conditions in bias voltage that 

would allow for modulation. Tests were performed at the previously determined optimal 

transmit frequencies of 1275 MHz and 1300 MHz with the same input power level to the 

transponder of -24.3 dBm. Bias voltage was swept from -0.3 V to 0.3 V and power output 

levels from the receiving antenna were recorded as shown in Figures 3.17 and 3.18.  

 

             Figure 3.17: Bias vs. Pout of transponder at 1275 MHz Tx frequency 
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Analysis of the data in Figure 3.17 reveals the specific behavior of the biased 

diode transponder. The peak occurring at a bias voltage of approximately 0.01 V provides 

optimal performance of the transponder and the best conversion efficiency. Beginning 

with a bias of -0.3 V, output power from the transponder climbs steadily until it reaches -

0.024 V, after which it fluctuates between -41 to -43 dBm, and then proceeds to sharply 

decline after 0.051 V. In a negative bias configuration, a change from -0.024 V to -0.13 V 

(∆=0.106 V) produces a change in conversion loss of -20.7 dB (output power drops from 

63.1 nW to 0.54 nW), which is sufficient to produce a digital logic zero in retransmission. 

Likewise, moving in the opposite direction, a change in bias from 0.009 V to 0.151 V 

(∆=0.142 V) causes a change in conversion efficiency of -16.1 dB (output power drops 

from 74.1 nW to 1.82 nW), equally as sufficient to produce a digital logic zero.  
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Figure 3.18: Bias vs. Pout of transponder at 1300 MHz Tx frequency 

 

Analysis of the data in Figure 3.18 reveals the specific behavior of the biased 
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3.18). In a negative bias configuration, a change from -0.072 V to -0.194 V (∆=0.122 V) 

only produces a change in conversion loss of -4.1 dB (compared to -15.2 dB in Figure 

3.17), which may not be sufficient to produce a clear digital logic zero in retransmission. 

Likewise, moving in the opposite direction, a change in bias from 0.0 V to 0.098 V 

causes a change in conversion efficiency of only -3.5 dB. This data verifies the results 

shown in Figure 3.15 where it can be seen that modulation is less likely possible at 1300 

MHz due to much smaller fluctuations of amplitude from a change in bias. These 

characteristics are important when individual transponders are designed and fabricated 

for use in a sensing network employing frequency discrimination that is comprised of 

many devices. For the purposes of interrogation, each sensor would need to be identified 

by its frequency of operation.  

 

3.7 Conclusions 

 The Remote Lock-In Amplifier concept was developed and tested.  The capability 

to effectively communicate with the 1
st
 generation low-power remote transponder within 

the RLIA system was demonstrated. A 2
nd

 generation biased transponder was built to 

implement modulation of the retransmitted signal in an effort to employ frequency 

discrimination within a sensor network. Measurements of both transponders were 

compared and it was seen that application of the RLIA sensor system in a field 

environments is possible. 
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CHAPTER 4 

APPLICATION OF RECTENNA TECHNOLOGY: DIODE-INTEGRATED 

RADAR DETECTOR 

 

4.1 Introduction 

The following chapter consists of the design, fabrication, and testing of a diode-

integrated rectenna radar detector. The functionality of the radar detectors is to provide 

sensing capabilities for recognizing the presence of phenomena at a frequency of interest 

located at the remote sensor node, and correspondingly induce modulation to the signal 

being sent from the 2
nd

 generation transponder to the interrogator node. Through this 

configuration, the complete RLIA system is realized for use in a frequency discrimination 

interrogation scheme.  

Being essentially a rectenna, the radar detector senses microwaves occurring at a 

certain frequency within its local environment and transforms the microwave energy to a 

DC voltage proportional the strength of the signal impinging on the receiving antenna. 

The output of the radar detector can then be redirected to the bias input of the 2
nd

 

generation transponder, where this DC voltage input would cause a change in conversion 

loss, thus modulating the retransmitted interrogation signal to the base station. When the 

base station receives the modulated interrogation signal—using the lock-in amplifier—

the information sensed by the radar detector will be extracted. However, when the radar 

detector is not sensing the presence of microwave energy at the frequency of interest it 

will simply have a zero DC voltage output, which will not affect the conversion 
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efficiency of the transponder. In a final realization of the RLIA system, the detector and 

transponder would both be incorporated as part of the remote sensor node.  

 

4.2 Design of Radar Detector 

As seen in Figure 1.4, the radar detector is designed by modifying the 1
st
 

generation transponder and replacing the transmitting 2.6 GHz patch antenna with a pad 

for a DC voltage connection. Also included in the design layout is a quarter-wavelength 

patch antenna operating at 1.3 GHz, a Schottky diode, and circuitry containing a 10 KΩ 

resistor for the purpose of maximizing voltage sensitivity and an 11pF RF blocking 

capacitor. The diode-integrated radar detector is fabricated on Taconic, 60 mil (Er=6.15) 

copper substrate incorporating surface mount components. A patch for soldering a DC 

wire connection is included after the DC blocking capacitor and shunt resistor.  
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Figure 4.1: Layout of diode-integrated radar detector 

 

Ideally, when the radar detector is employed in the RLIA system with the 

transponder as part of an interrogation scheme using frequency discrimination, it will 

sense phenomena occurring at a unique frequency from the interrogation signal being 

sent to the transponder. However, for the purposes of this research, a frequency of 

operation for the radar detector of 1300 MHz was chosen. This choice was made due to 

ease of modifying the existing design of the transponder into the radar detector and taking 

advantage of the previously existing narrow-band conjugate-matching technique used 

with the 1
st
 and 2

nd
 generation transponders. By taking this approach, several advantages 

were gained: the need for additional filtering for radar signal frequency-selection could 

be minimized or eliminated as well as the need for discrete matching components, and 

using 1300 MHz for the frequency of operation for the radar detector allowed verification 

of the input power to the receive antenna of the transponder to be done. Additionally, due 

to the compactness of the radar detector, it may be possible to integrate multiple devices 
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onto a single remote sensor node. This would provide the capacity to cover multiple 

frequencies at once or to harvest a higher amount of microwave energy at a single 

frequency. In the final realization of the RLIA system, where the remote sensor will be 

located in a field environment, the detector would be designed to operate at a different 

frequency, for example a frequency required for sensing the presence of two-way radio 

use. In Chapter Three it was observed that at the optimal operating frequency a change in 

bias of only 0.1 V could cause output power from the transponder to change by 15 dB, 

and it was concluded that this kind of change in conversion efficiency is sufficient to 

essentially turn ―off‖ and ―on‖ the retransmitted signal from the transponder.  

 

4.3 Simulations of Radar Detector 

 Simulations of the diode-integrated radar detector were performed in Agilent 

ADS and the results of presented in this section. Figure 4.2 shows the schematic for the 

radar detector including the equivalent circuit models for the 1.3 GHz patch antenna 

(detector antenna), the Schottky diode based doubler (power detector), and the wire 

connection (output load).  Referring to Figure 4.2, the detector antenna block is 

comprised of four impedance blocks (Z1P5, Z1P8, and Z1p9). Each impedance block 

provides the complex input impedance of the antenna at the fundamental frequency and 

2
nd

 through 4
th

 harmonics. Immediately following each impedance blocks, in series, is an 

ideal band-pass filter that is open-circuited out-of-band. The band-pass filters guarantee 

that only one impedance block is active at a given harmonic. A full-wave analysis of the 

antenna was performed with conjugate-matching to the power detector at the radar signal 

frequency, which allowed values to be determined for simulation purposes. The detector 
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antenna is followed by a shunt stub for conjugate matching to the power detector, 

followed by the power detector. The power detector is comprised of a Schottky diode 

model, a shunt resister and shunt capacitor. The resistor is a 10 kΩ (Modelithics KOA 

0402) model that provides maximum voltage sensitivity to the detector, and the capacitor 

is an 11pF (Modelithics Johanson 0402) model that behaves as an RF short. On the 

output side of the power detector is a high-value resistant load (1,000 Ω) for a DC voltage 

connection.  

 

 

 

Figure 4.2: Schematic for the conjugate-matched radar signal detector 
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As seen in Figure 4.3, the simulated results of the radar detector design predicted 

an RF-to-DC conversion efficiency varying from ~0.02% to ~32% for an input power 

range of -55 dBm to -10 dBm. Additionally, simulation results verify that the radar 

detector design would be capable of inducing modulation onto the return signal sent from 

the 2
nd

 generation transponder to the interrogating node.  

 

 

 

 

 
 

Figure 4.3: Simulated conversion efficiency of the radar signal detector  

 

 

 

 

 

Figure 4.4: Radar signal detector output voltage and current versus input power (left) 

and I-V curve for the Schottky diode used in the multiplier  

of the harmonic transceiver (right)  
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Figure 4.4 (left) shows the Vout and Iout curves for the radar detector, and it is seen 

that with an input signal power of approximately -20 dBm an output of 50 mV at 50 μA 

is produced. The I-V curve in Figure 4.4 (right) indicates that these voltage and current 

conditions are sufficient to forward bias the diode doubler on the transponder. It can be 

concluded from the results of the simulations that if the presented radar detector was 

employed in a field environment for remote sensing, any signal greater than -20 dBm 

could be detected. The supplied bias from the detector due to this sensed signal would 

accordingly provide the required change in bias to the transponder that is needed to 

communicate back to the interrogating base station relevant information in the form of a 

modulated return signal.  

 

 

 

4.4 Measurement Results of Radar Detector 

 To perform measurements of the radar detector the same standard testing 

equipment was used as was previously for testing the transponder (Table III, Appendix 

A). A distance of 4 feet was used to achieve an input power to the receiving antenna of 

the radar detector of -24.3 dBm. The input power to the receiving antenna is equal to the 

input power of the detector itself due to the fact that the receiving antenna gain is 0 dB. A 

block diagram of the testing configuration for the measurements of the radar detector can 

be seen in Figure 4.5. The transmitting antenna sends a 1.3 GHz signal modulated with a 

1 kHz sine wave, which is again the chopping frequency that the lock-in amplifier will 

use for detection of the very small DC voltages at the output of the radar detector. A 

function generator is used to provide the reference frequency to the lock-in amplifier that 

matches the chopping frequency imparted onto the transmitted signal.  
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Figure 4.5: Block diagram of testing configuration of the radar detector 

 

The first set of measurements of the radar detector involved a transmit power 

sweep beginning at the maximum calibrated source output of 12.2 dBm (input power of -

23.4 dBm to the radar detector), and decreasing in 1 dB steps until the minimum 

detectable output from the radar detector is reached. The measured and simulated results 

are shown in Figure 4.6 (Table II, Appendix A), where it is seen that very good 

agreement was reached between these sets of data. Beginning with a -24.3 dBm power 

input to the detector, output voltage is approximately 20.5 mV (19.4 mV in simulation). 

As transmit power is decreased in 1 dB steps, output voltage is seen to decrease 

approximately according to        
     , which is in accordance to the square-law 

region described in section 2.3 of Chapter Two. This square-law behavior exists until 

input power reaches approximately -45 dBm, after which point the voltage output from 

the radar detector is less stable. The reason for this instability is due to TSS of the 

detector, as discussed in section 3.3 of Chapter Three. However, in comparison to the DC 

voltage output of the Narda detector (Figure 3.3), the radar detector is seen to detect 

lower input powers within the square-law region. The Narda detector is seen to operate 

within the square-law region only until approximately -35 dBm, which is 10 dB above 

the edge of the square-law region for the radar detector.  

Pin=-24.3 dBm
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Figure 4.6: Measured vs. simulated results of the radar detector at PTx = 1300 MHz. 
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A comparison of the output voltage provided by the radar detector to the output 

voltage provided by the Narda detector (Figures 3.3, 4.6, and Appendix A) at an input 

power of approximately -45 dBm show that the radar detector has better performance 

characteristics, which are helpful within the proposed application. At an input power of -

45.4 dBm, the Narda detector provides 0.069 mV of DC voltage at its output. The radar 

detector, however, provides 0.25 mV of DC voltage at its output with an input power of -

45.3 dBm, which is approximately 360 percent of what the Narda detector can provide 

with this input power. This is a useful quality for the purposes of providing sufficient DC 

voltage biases to the transponder when smaller detected signals are present. To consider 

the feasibility of combining the radar detector and transponder together at the remote 

sensor node it is necessary to observe, as seen in Figure 3.17, that an approximate 40 mV 

change in bias was sufficient to provide a change in Pout of the retransmitted signal equal 

to -7.8 dB. To determine the required input power to the radar detector to produce an 

output DC voltage of 40 mV, it is possible to calculate the reponsivity of the radar 

detector, which is defined as   
         

       
 and extrapolate from this value. The resistivity 

of the detector was found to be 5518.2 
  

  
, therefore it was found that an input power to 

the radar detector of -20.4 dBm would be sufficient to produce an output DC voltage of 

40 mV, which could ultimately be redirected to the bias of the transponder and induce 

amplitude modulation.  

 

 

 

 



www.manaraa.com

79 
 

4.5 Conclusions 

 Design simulations in Agilent ADS and testing results of the radar detector were 

included to demonstrate minimum signal detection capabilities at 1300 MHz. It was seen 

that the fabricated radar detector was capable of sensing a signal of approximately -53 

dBm, and accordingly producing a rectified DC voltage output of 0.05 mV. By 

calculating the responsivity of the radar detector, it was also discovered that an input 

power of -20.4 dBm to the device would be sufficient in creating enough DC voltage to 

modulate the transponder‘s return interrogation signal. Referring to the measurements 

presented in Chapter Three of the 2
nd

 generation transponder in a bias sweep 

configuration (Figure 3.17), it is seen that an approximate 40 mV change in bias was 

sufficient to cause a 7.8 dB drop in conversion efficiency.  
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CHAPTER 5 

SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 

 

5.1 Summary 

This thesis presented the research, design and fabrication associated with a unique 

application of rectenna technology combined with lock-in amplification. An extremely 

low-power harmonic transponder is conjoined with an interrogator base-station, and 

utilizing coherent demodulation the Remote Lock-In Amplifier (RLIA) concept is 

realized. The lock-in amplifier performs phase sensitive detection using a phase locked 

loop and reference frequency that is matched to the experimental signal‘s modulating 

frequency. The lock-in amplifier provides benefit to the interrogation system through its 

ability to detect signals below the noise floor by singling out signal components at 

specific reference frequencies. Without phase sensitive detection, extremely weak signals 

or signals arriving in the presence of an excessive amount of noise would otherwise be 

obscured. 

Development of the RLIA began with a bench-top configuration including 

standard test equipment to perform characterization of a Narda 4503-01 coaxial Schottky 

barrier diode detector (Figure 3.2). The purpose of this testing was to verify both the 

functionality of the lock-in amplifier as well as sensitivity of the diode detector. 

Sensitivity was measured and results were found to correlate to the manufacturer‘s data 

sheet. Data related to detector sensitivity served as a reference for future measurements. 
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Using the sensitivity graph (Figure 3.3) and measured output voltage from the detector 

during experimentation with the full RLIA system, detector input power levels could be 

deduced, thus validating link budgets. 

 After characterizing the coaxial detector and verifying functionality of all testing 

equipment, a complete configuration of the RLIA system was constructed including the 

1
st
 generation remote transponder (Figure 3.7). Utilizing harmonic re-radiation with very 

low-power input, the 1
st
 generation transponder (Figure 3.4) detects a transmitted 

interrogation signal and responds by retransmitting the second harmonic of the signal. 

The 1
st
 generation transponder performs this task while using no additional power besides 

that which accompanies the wireless signal. Demonstration of the first complete 

configuration provided proof of concept for the RLIA and feasibility of processing 

relevant information under ―zero‖ power operating conditions with a remote transponder. 

A spectrum analyzer and lock-in amplifier were used in the measurements and the data 

was compared (Figure 3.8). Results showed that the configuration including the lock-in 

amplifier provided detection of the return signal occurring below the noise floor (~5 dB 

below what was possible using a spectrum analyzer), thus verifying prior assertions of the 

RLIA. 

Following the initial demonstration of the RLIA system, design and fabrication of 

a new version of the transponder was introduced. The existing zero-bias transponder was 

modified to include a modulating DC bias to the diode-based frequency doubler. Applied 

bias voltage directly changed the impedance match between the receiving 1.3 GHz 

antenna and the diode—by changing the diode impedance—causing a change in 

conversion loss. It was shown through testing that a change in conversion loss induces an 
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amplitude modulating effect on the retransmission of the signal from the transponder 

(Figure 3.15). A test of bias sweep at the optimal operating frequency was performed on 

the 2
nd

 generation transponder and it was seen that a change of ~ 0.1 V in either a positive 

or negative bias configuration induced an approximate 15 dB change in transponder 

output power (Figure 3.16). This performance characteristic can be advantageously used 

in implementing a frequency discrimination interrogation scheme for remote sensor 

networks. 

 Chapter Four of this thesis consisted of the research associated with and design of 

a radar detector. The radar detector was comprised of a quarter-wavelength patch antenna 

operating at 1.3 GHz, a Schottky diode, and circuitry containing a 10 KΩ resistor to 

maximize voltage sensitivity and an 11 pF RF blocking capacitor (Figure 4.1). The radar 

detector was designed to sense microwaves occurring at a certain frequency within its 

local environment and transform the microwave energy to a DC voltage proportional the 

strength of the signal impinging on its receiving antenna. The output of the radar detector 

could then be redirected to the bias input of the 2
nd

 generation transponder, where this DC 

voltage input would cause a change in conversion loss and modulate the retransmitted 

interrogation signal from the transponder to the base station. When the base station 

receives the modulated interrogation signal the information sensed by the radar detector 

is extracted. When the radar detector is not sensing the presence of microwave energy at 

the frequency of interest, the conversion efficiency of the transponder will not be affected 

and the interrogating base station will not receive any information. 

 Design simulations in Agilent ADS and testing results of the radar detector were 

included to demonstrate minimum signal detection capabilities at 1300 MHz. It was seen 
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that the fabricated radar detector was capable of sensing a signal of approximately -53.3 

dBm. Additionally, it was found that an input power of -20.4 dBm to the radar detector 

would accordingly produce a rectified DC voltage output of 40 mV. Referring to the 

measurements presented in Chapter Three of the 2
nd

 generation transponder in a bias 

sweep configuration (Figure 3.17), it was seen that an approximate 40 mV change in bias 

was sufficient to cause a 7.8 dB drop in conversion efficiency. These two sets of data 

verified the feasibility of pairing the radar detector and the 2
nd

 generation transponder 

together at the remote sensor node to perform modulation of interrogation signals. 

 

5.2 Recommendations for Future Work 

The future work of the Remote Lock-In Amplifier concept should involve 

advances in both the remote transponder (sensor node) and interrogating base station 

(interrogator node). Future research on the sensor node will be directed toward 

developing (1) ―zero-power‖ sensors and (2) ―low-power‖ sensors that will possess 

specific operational characteristics and optimized functionalities, demonstrating increased 

capability within a network. Efforts will be directed at increased power efficiency of the 

remote sensors to provide extremely long lifetimes with enhanced sensing and potential 

on/off functionality.  

Continued development on the interrogator node will be aimed toward increasing 

compactness and evolving the bench-top interrogator/receiver that was demonstrated in 

this work to a compact hand held or portable device that communicates with sensor 

nodes. Some expected advantages of the next generation interrogation node over the 

bench-top version will be (1) the ability to simultaneously interrogate multiple sensor 
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nodes, and (2) the ability to communicate with other interrogator nodes to optimize 

network quality of service. Overall future research will be focused on a primary goal of 

optimally combining multiple interrogators with multiple low-power or zero-power 

sensors. 
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Appendix A   Additional Tables of Measurements, Lists and Specifications of 

Equipment 

 

 

Table I: Sensitivity measurements of Narda detector (Model 4503-01) 

 
Calibrated Power (dBm) Vdc (mV) 

11.58 586.7 

10.58 521.5 

9.58 460.5 

8.58 406.7 

7.58 356.4 

6.58 314.3 

5.58 274.3 

4.58 239.3 

3.58 207.3 

2.58 180.5 

1.58 154.7 

0.58 133.3 

-0.42 113.6 

-1.42 96.0 

-2.42 81.5 

-3.42 68.9 

-4.42 57.8 

-5.42 48.0 

-6.42 39.7 

-7.42 33.1 

-8.42 27.3 

-9.42 23.2 

-10.42 18.8 

-11.42 15.3 

-12.42 12.4 

-13.42 10.06 

-14.42 8.07 

-15.42 6.49 

-16.42 5.17 

-17.42 4.16 

-18.42 3.32 

-19.42 2.73 

-20.42 2.16 

-21.42 1.74 

-22.42 1.39 

-23.42 1.12 

-24.42 0.90 

-25.42 0.73 

-26.42 0.58 

-27.42 0.48 

-28.42 0.39 



www.manaraa.com

92 
 

Appendix A (Continued)  
 

 

Table I: (Continued) 

 
Calibrated Power (dBm) Vdc (mV) 

-29.42 0.33 

-30.42 0.27 

-31.42 0.23 

-32.42 0.20 

-33.42 0.17 

-34.42 0.15 

-35.42 0.13 

-36.42 0.12 

-37.42 0.11 

-38.42 0.097 

-39.42 0.092 

-40.42 0.087 

-41.42 0.082 

-42.42 0.079 

-43.42 0.080 

-44.42 0.070 

-45.42 0.069 

-46.42 0.068 

-47.42 0.069 

-48.42 0.070 

-49.42 0.069 

-50.42 0.061 

-51.42 0.061 

-52.42 0.059 

-53.42 0.061 

-54.42 0.060 

-55.42 0.059 

-56.42 0.058 

-57.42 0.059 

-58.42 0.059 

-59.42 0.062 

-60.42 0.061 

-61.42 0.060 

-62.42 0.059 

-63.42 0.059 
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Appendix A (Continued) 

 

 

Table II: Measured and simulated sensitivity values of radar detector 

 
Tx Power (dBm)  Pin Radar Detector 

(dBm) 

VDC meas. (mV)  VDC simul. (mV) 

12.2 -24.3 20.5 19.4 

11.2 -25.3 16.4 16.2 

10.2 -26.3 14.8 13.5 

9.2 -27.3 12.8 11.2 

8.2 -28.3 10.6 9.2 

7.2 -29.3 7.6 7.6 

6.2 -30.3 6.5 6.2 

5.2 -31.3 5.4 5 

4.2 -32.3 4.7 4.1 

3.2 -33.3 3.4 3.3 

2.2 -34.3 2.8 2.7 

1.2 -35.3 2.2 2.1 

0.2 -36.3 1.7 1.7 

-0.8 -37.3 1.6 1.4 

-1.8 -38.3 1.3 1.1 

-2.8 -39.3 0.9 0.88 

-3.8 -40.3 0.68 0.7 

-4.8 -41.3 0.58 0.56 

-5.8 -42.3 0.37 0.44 

-6.8 -43.3 0.36 0.35 

-7.8 -44.3 0.27 0.28 

-8.8 -45.3 0.25 0.24 

-9.8 -46.3 0.24 0.18 

-10.8 -47.3 0.18 0.14 

-11.8 -48.3 0.12 0.11 

-12.8 -49.3 0.08 0.09 

-13.8 -50.3 0.05 0.07 

-14.8 -51.3 0.04 0.06 

-15.8 -52.3 0.06 0.05 

-16.8 -53.3 0.05 0.04 
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Appendix A (Continued)  

 

 

Table III: List of parts used in testing configuration 

 

Manufacturer: Model and Specs: Equipment Type: 

Hewlett Packard 8594E (9k – 2.9 GHz) Spectrum Analyzer 

Stanford Research Systems SR530 Lock-In Amplifier 

Agilent 33120A (15 MHz) Function Generator 

Agilent 
ESG-D4000A (250 kHz – 4 

GHz) 
Signal Generator 

Narda 4503-01 Schottky Barrier Detector 

Narda 
614A (2.6 – 3.95 GHz, 

Gain=5.048 dBi) 
Waveguide 

Sciperio 
(custom made = 1.3 GHz, 

Gain=7.075 dBi) 
Waveguide 

 

 
Figure I: Sensitivity curve of Narda Schottky-barrier detector (4503-01) 
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Appendix B 1
st
 Generation Transponder Measurement Notes    

 

 

The following summarizes the challenges confronted during testing of the 1
st
 

generation transponder within the RLIA set-up and techniques of overcoming them.  

 

B.1 Transmitter Block 

It was known that a properly functioning 1
st
 generation transponder had a peak 

conversion efficiency of around -20 dB, occurring at input power levels within the range 

of approximately -30 dBm to -20 dBm. Also known, was that as the input power to the 

transponder falls below -30 dBm the conversion efficiency also starts to decrease. The 

same effect occurs when the input power to the transponder reaches above -20 dBm. 

Simply sending more transmit power from the interrogator was not the solution to 

maximizing the retransmitted 2.6 GHz signal power from the transponder. Testing had to 

be done to insure that the transmitted 1.3 GHz signal was between -20 dBm and -30 dBm 

and that it was also a clean transmit signal, free of harmonics. 

The first part of testing included the front-end receiver block as seen in Figure 3.7 

(not include the down-conversion stage). To accomplish a clean transmit signal, first a 

low-pass filter (VLF-1800+) was added between the signal source and the transmitting 

antenna. However signal harmonics were still seen on the spectrum analyzer at the 

receiving end of the system. Investigation needed to be done to see if the signal 

harmonics were originating from the signal source. It was estimated that the total path 

loss from transmitting antenna to receive antenna including the conversion loss of the 

transponder was close to 100 dB. Therefore, any signal harmonics originating from the 

signal source needed to be suppressed by at least this value. It was found that as 3-5 
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Appendix B (Continued)    
 

 

successive filters were added in series, the transmitted signal was not sufficiently clean. 

However introducing 7 VLF-1800+ filters in series provided a transmit signal that was 

sufficiently free of source generated harmonics to achieve a clean received signal at 2.6 

GHz. This however, was not in itself sufficient for a clean receive signal from the 

transponder. In addition work had to be done to the receiver side of the interrogator. 

 

B.2 Receiver Block 

In addition to introducing filters at the transmit end of the RLIA system, 

additional filtering became required to eliminate interference signals from entering the 

system. Not only were 2.6 GHz coaxial band-pass filters (VBFZ-2527+) required for 

filtering interference signals, as seen in Figure 3.7, they were also required for 

eliminating harmonics caused by the amplifiers within the receiver block, as well as 

harmonics created from non-linear behavior of the spectrum analyzer. In addition to the 

coaxial band-pass filters, a coupled-line band-pass filter (percent bandwidth = 1%) was 

designed to narrow the noise bandwidth of the system. The coupled-line band-pass filter 

was not by itself successful at narrowing the noise bandwidth. During testing, it was seen 

that the filter was behaving as antenna and was itself introducing interference signals into 

the system. To overcome this, a metal enclosure was utilized to house the filter and block 

additional interference from being injected into the system at the receiver block end. 

After this measure was taken, the receive signal seen on the spectrum analyzer was 

greatly improved.  
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Appendix B (Continued)    

 

 

A down-conversion stage with an IF of 61 MHz was implemented to eliminate 

unwanted signals that were appearing around 2.6 Ghz. Eliminating these interference 

signals was not crucial in terms of viewing the signal on the spectrum analyzer, because 

the desired received signal can be visually identified from the interference signals. 

However, proper filtering of interference is necessary for the purposes of reading voltage 

levels on the lock-in amplifier. The total power being input to the detector will provide a 

voltage reading to the lock-in amplifier, and if this total power input is not solely 

comprised of the desired signal, the lock-in amplifier will give an inaccurate reading.  It 

was found that the combination of the transmit signal filtering, added receiver block 

filtering and additional down-conversion was sufficient to eliminate unwanted signals at 

the desired frequencies. 
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